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Radiation Fields of Optical
Stripline Waveguides

MARION W. SCOTT anp JEROME K. BUTLER, SENIOR MEMBER, IEEE

Abstract—Dispersion characteristics and radiation fields of an optical
stripline waveguide radiating into free space are calculated. The wave-
guides are fabricated as multiple layers of differing dielectric materials. A
top layer is etched to form a “cap” with an effective waveguide in a layer
below the cap. Confinement of the ficids to the waveguide is obtained in
the vertical direction by dielectric discontinuities, while lateral confine-
ment occurs because of spatial interference of a confinuum of plane waves.
The radiation field of the fundamental imode in a plane perpendicular to
the waveguide Iayers is characterized by the layer widths and index
discontinuities. Beamwidths of the fundamental mode in the plane parallel
to the dielectric layers are developed in terms of the waveguide parame-
ters. Values of these parameters which yield the best optical confinement
under the stripe can be obtained.

I. INTRODUCTION

HE OPTICAL stripline waveguide has potential ap-

plications as a low-loss channel waveguide in in-
tegrated optical circuits [1]. The interest in this waveguide
is due to the fact that it is relatively simple to fabricate
compared to buried waveguide structures having built-in
dielectric steps in both transverse directions. The basic
structure of the optical stripline is shown in Fig. 1. A
similar structure, with region 4 replaced by a conducting
plane and d,=0, has been proposed for use at millimeter
and submillimeter wavelengths [2]. Current research is
aimed at producing circuit elements and system applica-
tions using these waveguides.

An overview of dielectric waveguides for microwave
integrated circuits has been given by Knox [3}. Among the
most recent applications are scannable antennas and tun-
able filters. Structures have been fabricated for use as
electronic phase shifters at millimeter [4] and submillime-
ter wavelengths [5]. Itoh and Hebert [6] have simulated an
electronically scannable antenna structure with a
mechanical scan. A review of work in integrated optics
has been given by Kogelnik [7]; many of the devices
demonstrated use the optical stripline waveguide as a
transmission element. An example is the directional cou-
pler [8], which consists of several striplines spaced closely
together to allow coupling between guides has been
analyzed using coupled mode theories [9].

The effective index method [1] is a mathematically
simple way of predicting some of the properties of optical
striplines. This method explains light confinement under
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Fig. 1. Cross section of the optical stripline waveguide.

the stripe by assuming an effective index of refraction step
in the lateral direction in region 3 of Fig. 1. This effective
index step is found by first obtaining the propagation
constants for the structure shown in Fig. 1 with w=o0
and then with w=0. The difference between the two
propagation constants divided by the free-space wave-
number gives the effective index step.

The far-field radiation pattern of a cleaved stripline
radiating into free space is a useful way to characterize the
structure. For example, the pattern can be measured ex-
perimentally and compared with these computed results
to obtain values of the various waveguide parameters such
as the refractive indices n,, n,, ny, and n,, or the dimen-
sions d,, dy, and w. Another potential application of the
stripline structure is in optical arrays where the waveguide
is used as a member of the array. The pattern of the array
of striplines is the product of the pattern of a single
element and the array pattern.

In this paper we develop a series of rigorous calcula-
tions showing how the far-field radiation pattern behaves
as a function of various waveguide parameters. In particu-
lar, we calculate the half-power beamwidth in the lateral
direction of a waveguide mode radiating into free space.
The value of the beamwidth is closely related to the
effective lateral index step, and consequently determines
the degree with which the waveguide mode is confined to
the region below the stripe. For example, broad patterns
are due to strongly confined modes. (These modes should
be less vulnerable to losses introduced by lateral wave-
guide bends.)

A rigorous mathematical model of the optical stripline
[10] does not require use of an effective lateral index step.
An extension of this model has been developed for the
structure in Fig. 1. The height is assumed to be infinite.
Numerical results are given to show how the pattern
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depends on the parameters d,, d;, w, and the index discon-
tinuity.

Since the effective index approximation involves con-
siderably less computation, a method for obtaining infor-
mation on the radiation pattern in the lateral direction
using this approximation would be useful. One possible
approach is to compute the effective index step in the
lateral direction and then compute the radiation pattern
of a symmetric three-layer waveguide with this index step
and a thickness equal to the stripe width. We have used
this approximate technique to compute the half-power
beamwidth of the fundamental mode in the lateral direc-
tion. A comparison is given with the results obtained by
using the more exact model presented in this paper.

II. THEORY

The analysis of the waveguide structure will parallel
that given in [I0]. We will assume, following Marcatiili
[11], that there are two sets of modes, one polarized along
the x direction and one along the y direction. For simplic-
ity, we will deal with the modes polarized along the x
direction. We will further restrict this discussion to in-
clude only the even modes. The general solutions to the
wave equation in the various regions can be written

Yi(x,y)= % A, cosp,xexp(—py(y—d,)) (1a)

a(xy)= [ cosgx] E(@)exp(s” (v~ )
+ F(q)exp(—s"(y—dy))]dq (1b)
Ys(x,y) = J() K cosgx| B(q)sing"y + C(q)cosq"y |dg
(1)
(xy)= [~ cosqx D(@)expr”(dy+y)]dg  (1d)

where

y;  solution of the wave equation in the ith region,
ko free-space wavenumber,

n,  index of refraction in the ith region,
k, =k @
p, =nv/2w ()

B  propagation constant

pR=pit=ki-p* (4a)
g’ —s"=k;-p* (4b)
¢ +q?=ki-p° (4c)
q'~r=ki-p>. (4d)

Matching the fields and their derivatives at the boundaries
yields a secular equation of the form

det(E—-T)=0 5)
where E is the unit matrix and IT' is a matrix whose
elements depend on the unknown propagation constant 8.
Since the matrices in (5) are of infinite order the eigen-
value solutions are found by taking an increasing matrix
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order beginning with a first-order matrix. This process
forms a convergent sequence, converging to the true value
of B. For the numerical results given in this paper, a
fourth-order matrix was used. This order is sufficient since
the sequence converges rapidly.

The constants B, C, D, E, and F of (1) are found by
matching the fields or derivatives at the boundaries. The
field description can then be found by substituting these
constants into (1), giving

Yy(x,y)= 21A,.cosp,’,xexp(—p;'(y—dz)) (6)
Woy)= 3 40, =234 ™
n=]

where I, represents an integral expression.

The radiation pattern is related to the Fourier trans-
form of the field at the aperture [12]. Denote this trans-
form by

&k, k)= f_z fj;E_f(x,y)exp(i(kxx+kyy))dxdy ®)

where Ef represents the transverse facet electric field, and
k,=kgcospsing (9a)
k, =kysin¢sind (9b)
where # denotes the angle from the z axis and ¢ is the
angle from the x axis in the xy plane. The far-field pattern

for the case of an aperture field polarized in the x direc-
tion can be written

(10)

where C is a constant, and § and ¢ are unit vectors. It is,
therefore, necessary to obtain e,(k,,k) which is the
Fourier transform of the field distribution given previ-
ously. The result can be written

4
ex(kx’ky) = §1 F(dlx)

where F(y;) denotes the Fourier transform of ¢,.

E(8,¢)= C[éex cos— e, sin¢cos0]

(1

IIIL.

The propagation constant for the structure in Fig. 1
with d,=0 has been previously calculated [10]. The effect
of region 2 on the propagation constant is shown in Fig. 2.
We have used normalized values of the parameters so that
the plot will be applicable to a wide class of structures.
The normalized parameiers are

NUMERICAL RESULTS

Dy = dyko(n2—n2)"? 12a
2 3 4
Dy=dyky(r2—n2)"/? (12b)
W= wkn3— nﬁ)l/2 (12¢)
2 2
2 B 1y
= - 12d
kj(ni—n3) ni—n? (124)
2 2
n1 - nl
n=— 12e
2 (12¢)
W2 — n2
W=, (12f)

ny— n2
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Fig. 2. Normalized propagation constant of the fundamental mode as
a function of normalized stripe width.
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Fig. 3. Lateral half-power beamwidth of the fundamental mode as
a function of stripe width.

Fig. 3 shows the normalized propagation constant as a
function of 2W, the normalized stripe width, for various
values of D,. The propagation constant approaches that of
a three-layer waveguide for sufficiently large values of the
stripe width. For smaller values of the normalized stripe
width, which are more typical of the values used in
integrated optics, the propagation constant is a strong
function of D,. For large enough values of D,, we would
simply obtain a three-layer waveguide, and the effect of
the stripe would be inconsequential.

We now turn our attention to the radiation fields. The
pattern of a waveguide radiating into free space depends
on the actual values of the various waveguide parameters
and thus cannot be expressed in terms of normalized
parameters. Consequently, we chose values of the various
parameters typical of those used in integrated optics.
Consider a GaAs—AlGaAs waveguide with

ny=n,=n,=3.55
n,= 36
d3= 1.0 p.m.
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Fig. 4. Lateral half-power beamwidth of the fundamental mode as
a function of the index discontinuity.

We have chosen a wavelength of 1.15 um corresponding
to one of the transitions in a HeNe laser. At A=1.15 pm
absorption in GaAs is low.

The half-power beamwidth of the fundamental mode in
the lateral direction is plotted as a function of the stripe
width in Fig. 3. A scan in the lateral direction was chosen
because the far-field beamwidth will indicate how well the
fields are confined laterally. This is significant because
confinement of the fields in the lateral direction does not
occur because of an index discontinuity, and so it is
important to understand the waveguide parameters which
yield the greatest lateral optical confinement. The degree
of optical confinement is important in considerations of
scattering at waveguide bends.

From Fig. 3, it is apparent that the beamwidth de-
creases as d, increases. For small values of the stripe
width, the beamwidth is a strong function of d,. Each plot
exhibits a maximum in the beamwidth which would corre-
spond to an optimum value of w. Input coupling to the
waveguide, which depends on the numerical aperture,
would be maximized for this value of w. For d,=0, for
example, this optimum value would be a stripe width of
approximately 3 pm.

In obtaining Fig. 4, a structure was used with n,=n,=
ngny=3.6, d=1 pm, A=1.15 pm, w=3 pm, and the dif-
ference ny—n; was denoted An. This plot shows that the
dependence of the lateral beamwidth on the transverse An
is enhanced by the presence of region 4. Since a large An
is desired for confinement in the vertical direction, this is
the region of the plot which is of interest. Note that when
An=0.1, the effect of the thickness of region 4 increasing
from 0 to 0.2 ym is to decrease the half-power beamwidth
by about 35 percent.

Fig. 5 shows the dependence of the lateral beamwidth
on the thickness of the waveguide region 2. The structure
has n;=n,=n,=3.55, n;=3.6, A=1.15, and w=3 pm.

It is of interest to note that the effective index step
approximation discussed earlier yields good results for the
lateral half-power beamwidth. Fig. 6 shows plots of half-
power beamwidth versus d; with d,=0 computed using
the theory above (curve 1) and using the effective index
approximation (curve 2). It is apparent that the approxi-
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Fig. 5. Lateral half-power beamwidth of the fundamental mode versus
the thickness of region 3, the region where light is confined.
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Fig. 6. Comparison of the method given in this paper for calculating
the lateral half-power beamwidth (curve 1) with the effective index
method (curve 2).

mation predicts the correct shape of the curve. The error
which can be made using the approximation is less than
26 percent. If the pattern is needed only in the lateral
direction, the use of the approximation may be justified
by the savings in computation time.

IV. CoONCLUSION

The propagation constant 8 of the fundamental mode
in the optical stripline waveguide has been calculated. For
small stripe widths the value of 8 is strongly dependent on
the presence of a region between the stripe and the
waveguiding region. As the thickness of the isolating layer
increases, the effect of the strip width on 8 decreases.

The half-power beamwidth of the fundamental mode of
the optical stripline waveguide in a plane paraliel to the
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waveguide layers has been obtained; this is a useful indi-
cator of the degree of optical confinement in the lateral
direction. As the stripe widens the beamwidth decreases,
indicating that the fields are spreading in the waveguide.
As the stripe width is decreased beyond a critical point,
the beamwidth begins to decrease; this indicates that the
optical fields are no longer confined under the stripe. The
effect of increasing the thickness of region 2 is always to
reduce the half-power beamwidth.

The lateral beamwidth also depends on the thickness of
the waveguiding region d;. As d; is decreased the
beamwidth increases, up to the point where d; becomes so
small that the fields begin to spread cutside the waveguid-
ing region. Then the beamwidth drops sharply. This
behavior is also predicted by using the effective index
approximation to determine an index discontinuity, and
then calculating the far-field beamwidth of a three-layer
waveguide with this index step and a thickness of 2w.
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