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Radiation Fields of Optical
Stripline Waveguides

MARION W. SCOTT AND JEROME K. BUTLER, S13N10RbflWllBR, IEEE

A6smret-Dtspenvion &meMaties and rsdistkm fields of an optical

- Wsvt%ldde mdirlt@ ~to free Space m calculated. ‘Ills wave-
guides are fabricated ss multiple Ieyers of differing dielectric meterbds. A

top Inyer is etebed to form a %@ with sn effective wavegdde in a Ieyer
below tbe e+ ~ment of the fields to tbe waveguideis obtahed in
tbe vertical dimdion by dielectric diseontirndtieq wbtle Mend mnfhw-
ment emus becauseof spetbdMerferenm of a continuum of plnne vveves.
‘llw mdktion field of the fundamentalmude inaplane perpendicublrto

tbe waveguide Iayera is ekac@wd by the hlyer widths d hldeX

dkmhdtk. Beamwidtbs of tbe fundamental mode h the plane peralkd

tothediektrk layers aredeveloped in terms oftbewsveguide partuw
ters.l%luss oftbese pammetem vvldebyield the bestoptkal confbment
under tbe3tTipe can beobtakL

I. INTRODUCTION

T HE OPTICAL stripline waveguide has potential ap-

plications as a low-loss channel wavegnide in in-

tegrated optical circuits [1]. The interest in this waveguide

is due to the fact that it is relatively simple to fabricate

compared to buried waveguide structures having built-in

dielectric steps in both transverse directions. The basic

structure of the optical stripline is shown in Fig. 1. A

similar structure, with region 4 replaced by a conducting

plane and dz = O, has been proposed for use at millimeter

and submillimeter wavelengths [2]. Current research is

aimed at producing circuit elements and system applica-

tions using these waveguides.

An overview of dielectric waveguides for microwave

integrated circuits has been given by Knox [3]. Among the

most recent applications are scannable antennas and tun-

able filters. Structures have been fabricated for use as

electronic phase shifters at millimeter [4] and submillime-

ter wavelengths [5]. Itoh and Hebert [6] have simulated an

electronically scannable antenna structure with a

mechanical scan. A review of work in integrated optics

has been given by Kogelnik [7]; many of the devices

demonstrated use the optical stripline waveguide as a

transmission element. An example is the directional cou-

pler [8], which consists of several striplines spaced closely

together to allow coupling between guides has been

analyzed using coupled mode theories [9].
The effective index method [1] is a mathematically

simple way of predicting some of the properties of optical

striplines. This method explains light confinement under
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Fig. 1. Cross section of tbe optical stripline waveguide.

the stripe by assuming an effective index of refraction step

in the lateral direction in region 3 of Fig. 1. This effective

index step is found by first obtaining the propagation

constants for the structure shown in Fig. 1 with w= co

and then with w = O. The difference between the two

propagation constants divided by the free-space wave-

number gives -tie effective index step.

The far-field radiation pattern of a cleaved stripline

radiating into free space is a useful way to characterize the

structure. For example, the pattern can be measured ex-

perimentally and compared with these computed results

to obtain values of the various waveguide parameters such

as the refractive indices n ~, n2, nq, and nq, or the dimen-

sions dz, d~, and w. Another potential application of the

stripline structure is in optical arrays where the waveguide

is used as a member of the array. The pattern of the array

of striplines is the product of the pattern of a single

element and the array pattern.

In this paper we develop a series of rigorous calcula-

tions showing how the far-field radiation pattern behaves

as a function of various waveguide parameters. In particu-

lar, we calculate the half-power beamwidth in the lateral

direction of a waveguide mode radiating into free space.

The value of the beamwidth is closely related to the

effective lateral index step, and consequently determines

the degree with which the waveguide mode is confined to

the region below the stripe. For example, broad patterns

are due to strongly confined modes. (These modes should

be less vulnerable to losses introduced by lateral wave-

guide bends.)

A rigorous mathematical model of the optical stripline

[10] does not require use of an effective lateral index step.

An extension of this model has been developed for the

structure in Fig. 1. The height is assumed to be infinite.

Numerical results are given to show how the pattern
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depends cm the parameters d27 d3, w, and the index discon-

tinuity.

since the effective index approximation involves con-

siderably less computation, a method for obtaining infor-

mation on the radiation pattern in the lateral direction

using this approximation would be useful. One possible

approach is to compute the effective index step in the

lateral direction and then compute the radiation pattern

of a symmetric three-layer waveguide with this index step

and a thickness equal to the stripe width. we have used

this approximate technique to compute the half-power

beamwidth of the fundamental mode in the lateral &rec-

tion. A comparison is given with the results obtained by

using the more exact model presented in this paper.

H. ~EORY

The analysis of the waveguide structure will parallel

that given in [10]. We will assume, following Marcatilli

[11], that there are two sets of modes, one polarized along

the x direction and one along they direction. For simplic-

ity, we will deal with the modes polarized along the x

direction. We will further restrict this discussion to in-

clude only the even modes. The general solutions to the

wave equation in the various regions can be written

+l(x>.Y) = ~~1 A. cosp;xexp (–P;(Y - d,)) (la)

+~(x,~) = ~~ cosqx[ E(9) exp(s”(y - d2))

+ F(q) exp (– s“(Y – d2))]dq (lb)

$3(W) = Jm COS4X[ Xq)siw”y + C(q) cosq’’y]dq

(lC)

44(x>Y)=Jm cosqx[D(q)expr’’( d3+y)]dq (Id)

where

*1 solution of the wave equation in the ith region,

kO free-space wavenumber,

ni index of refraction in the ith region,

k, = koni

P: = nT/2w

P propagation constant

~~z_p;z= k:_ ~z

~z–~!!z=k:–~z

q2+q~’2=k; –~2

~z–rrrz=k~_~z.

Matching the fields and their derivatives

yields a secular equation of the form

det(E–~)=0

where E is the unit matrix and T is

(2)

(3)

(4a)

(4b)

(4C)

(4d)

at the boundaries

(5)

a matrix whose

elements depend on the unknown propagation constant p.

Since the matrices in (5) are of infinite order the eigen-
valwe solutions are found by taking an increasing matrix

order beginning with a first-order matrix. This process

forms a convergent sequence, converging to the true value

of ~. For the numerical results given in this paper, a

fourth-order matrix was used, This order is sufficient since

the sequence converges rapidly.

The constants 1?, C, D, E, and F of (1) are found by
matching the fields or derivatives at the boundaries. me

field description can then be found by substituting these

constants into (1), giving

(JI(X,Y) = ~~1 A.cosp;~e~p(-p;(y - d2)) (6)

$i(x>y) = S A.~, i=2,3,4 (7)
a-l

where ~. represents an integral expression.

me radiation pattern is related to the Fourier trans-

form of the field at the aperture [12]. Denote this trans-

fOITll by

where ~J represents the transverse facet electric field, and

kX = kocos~sin~ (%)

kY= kOsin@ sin~ (9b)

where @ denotes the angle from the z axis and @ is the

angle from the x axis in the w plane. The far-field pattern

for the case of an aperture field polarized in the x direc-

tion can be written

where C is a constant, and j and ~ are unit vectors. It is,

therefore, necessary to obtain eX(kX, kY) which is the

Fourier transform of the field distribution given previ-

ously. The result can be written

ex(kx~ky) = ~ ~(~i) (11)
~=1

where F(~i) denotes the Fourier transform of $i.

The propagation constant for the structure in Fig. 1

with dz = O has been previously calculated [10]. The effect

of region 2 on the propagation constant is shown in Fig, 2.

We have used normalized values of the parameters so that

the plot will be applicable to a wide class of structures.
The normalized parameters are

D2 = d2kO(n< – n~)l’2 (12a)
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Fig. 2. Normafimd propagation constant of the fundamental mode as
a function of normalized stripe width.
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Fig. 3. I-.ateraf half-power beamwidth of the fondamentaf mode as
a function of stripe width.

Fig. 3 shows the normalized propagation constant as a

function of 2 W, the normalized stripe width, for various

values of D2 The propagation constant approaches that of

a three-layer waveguide for sufficiently large values of the

stripe width. For smaller values of the normalized stripe

width, which are more typical of the values used in

integrated optics, the propagation constant is a strong
function of D> For large enough values of Dz, we would

simply obtain a three-layer waveguide, and the effect of

the stripe would be inconsequential.

We now turn our attention to the radiation fields. The

pattern of a waveguide radiating into free space depends

on the actual values of the various waveguide parameters

and thus cannot be expressed in terms of normalized

parameters. Consequently, we chose values of the various

parameters typical of those used in integrated optics.
Consider a Chi&-AIGaAs waveguide with

n, = n2 =n4=3.55

n3=3.6

d~ = 1.0 pm.

d,:O

n? 3.6

A=l15pm
2w= 6pm

~
0.02 0,04 0.06 0.06 0.10 0.12 .

INDEX STEP An

Fig. 4. Lateraf haff-power beamwidth of the fundamental mode as

a function of the index discontinuity.

We have chosen a wavelength of 1.15 pm corresponding

to one of the transitions in a HeNe laser. At A= 1,15 pm

absorption in GaAs is low.

The half-power beamwidth of the fundamental mode in

the lateral direction is plotted as a function of the stripe

width in Fig. 3. A scan in the lateral direction was chosen

because the far-field beamwidth will indicate how well the

fields are confined laterally. This is significant because

confinement of the fields in the lateral direction does not

occur because of an index discontinuity, and so it is

important to understand the waveguide parameters which

yield the greatest lateral optical confinement. The degree

of optical confinement is important in considerations of

scattering at waveguide bends.

From Fig. 3, it is apparent that the beamwidth de-

creases as dz increases. For small values of the stripe

width, the beamwidth is a strong function of dz. Each plot

exhibits a maximum in the beamwidth which would corre-

spond to an optimum value of w. Input coupling to the

waveguide, which depends on the numerical aperture,

would be maximized for this value of w. For d2 = O, for

example, this optimum value would be a stripe width of

approximately 3 pm.

In obtaining Fig. 4, a structure was used with nl = nz =

n47n3 =3.6, d=l pm, A= 1.15 pm, w=3 pm, and the dif-

ference n~ – n, was denoted An. This plot shows that the

dependence of the lateral beamwidth on the transverse An
is enhanced by the presence of region 4. Since a large An

is desired for confinement in the vertical direction, this is

the region of the plot which is of interest. Note that when

AnsO.1, the effect of the thickness of region 4 increasing

from O to 0.2 pm is to decrease the half-power beamwidth

by about 35 percent.

Fig. 5 shows the dependence of the lateral beamwidth

on the thickness of the waveguide region 2. The structure

has nl = nz= nb =3.55, n~==3.6, A=l.15, and w=3 pm.
It is of interest to note that the effective index step

approximation discussed earlier yields good results for the

lateral half-power beamwidth. Fig. 6 shows plots of half-

power beamwidth versus d3 with d2 = O computed using

the theory above (curve 1) and using the effective index

approximation (curve 2). It is apparent that the approxi-
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Fig. 5. Lateral half-power beamwidth of the fundamental mode versus

the thickness of region 3, the region where light is confined.
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Fig. 6. Comparison of the method given in this paper for calculating
the lateral half-power beamwidth (curve 1) with the effective index
method (curve 2).

mation predicts the correct shape of the curve. The error

whkh can be made using the approximation is less than

26 percent. If the pattern is needed only in the lateral

direction, the use of the approximation may be. justified

by the savings in computation time.

IV. CONCLUSION

The propagation constant /3 of the fundamental mode

in the optical stripline waveguide has been calculated. For

small stripe widths the value of ~ is strongly dependent on

the presence of a region between the stripe and the

wtweguiding region. As the thickness of the isolating layer

increases, the effect of the strip width on ~ decreases.

The half-power beamwidth of the fundamental mode of

the optical stripline waveguide in a plane parallel to the

waveguide layers has been obtained; this is a useful indi-

cator of the degree of optical confinement in the lateral

direction. As the stripe widens the beamwidth decreases,

indicating that the fields are spreading in the waveguide.

As the stripe width is decreased beyond a critical point,

the beamwidth begins to decrease; this indicates that the

optical fields are no longer confined under the stripe. The

effect of increasing the thickness of region 2 is always to

reduce the half-power beamwidth.
The lateral beamwidth also depends on the thickness of

the waveguiding region d~. As dx is decreased the

beamwidth increases, up to the point where d~ becomes so

small that the fields begin to spread outside the waveguid-

ing region. Then the beamwidth drops sharply. This

behavior is also predicted by using the effective index

approximation to determine an index discontinuity, and

then calculating the far-field beamwidth of a three-layer

waveguide with this index step and a thickness of 2 w.
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